

Seat No.

HAL-003-2015027

B. Sc. (Sem. V) (CBCS) Examination

June - 2023

Physics : 503

(New Course)

Faculty Code : 003 Subject Code : 2015027

Time : $2\frac{1}{2}$ / Total Marks : 70

Instructions :

- (1) All questions are compulsory.
- (2) Symbols have their usual meanings.
- (3) Figurtes to the right indicate marks.

1	(a)	Ans	wer the following in short :	4
		(1)	Define band width of an amplifier.	
		(2)	Write the function of emitter bypass capacitor.	
		(3)	Define distortion in an amplifier.	
		(4)	To which class does the push pull amplifier belong?	
	(b)	Ans	wer in brief : (any one)	2
		(1)	Find the voltage gain in dB if the voltage gain is 40.	
		(2)	A power transistor dissipates 7W. If the maximum	
			junction temperature is 85°C, find the maximum ambient	
			temperature at which it can be operated, given that	
			$\theta = 6.5^{\circ}$ C/W.	
	(c)	Ans	wer in detail : (any one)	3
		(1)	Give the comparison of different types of coupling	
			methods.	
		(2)	Write a note on thermal runaway.	
	(d)	Writ	te notes on : (any one)	5
		(1)	Explain transformer coupled amplifier with neat circuit	
			diagram.	
		(2)	Writre a note on Push-pull amplifier.	
HA	L-003	-2015	5027] 1 [Cont	

2	(a)	 Answer the following in short : (1) Define astable multivibrator. (2) Give two advantages of electronic switches. (3) What is the other name for bistable multivibrator ? (4) Define a clamping circuit. 	4
	(b)	Answer in brief : (any one) (1) An astable multivibrator has $R_2=R_3=15k\Omega$ and $C_1=C_2=0.05 \text{ W}^f$. Find the time period and frequency of the output wave form.	2
		(2) A peak-to-peak input voltage of 30V is applied to a positive clipper. If $R_L = 2.5 \text{ k}\Omega$ and $R = 220\Omega$, determine the output voltage for each half cycle.	
	(c)	 Answer in detail : (any one) (1) Write the conditions necessary for an RC circuit to work as integrating circuit. (2) Show that the output of a differentiating circuit is derivative of the input voltage 	3
	(d)	 Write notes on : (any one) (1) Explain monostable multivibrator with neat circuit diagram. (2) What do you understand by clipping circuit ? Explain the working of a combination clipper with a neat circuit diagram. 	5
3	(a)	 Answer the following in short : (1) What is the need of regulated power supply ? (2) Write the equation of minimum load resistance. (3) Define differential amplifier. (4) Write the full form of VLSI. 	4
	(b)	 Answer in brief : (any one) (1) A power supply has a voltage regulation of 1.5%. If the no-load voltage is 23V, what is its full-load voltage ? (2) A non-inverting op-amp has R₁ = 12 kΩ and R_f = 1.3 mΩ. Determine its voltage gain. 	2
	(c)	 Answer in detail : (any one) (1) Explain voltage regulation. (2) Write the characteristics of an ideal op-amp. 	3
	(d)	 Write notes on : (any one) (1) Write a note on series feedback voltage regulator. (2) Explain single ended input operation of a differential amplifier. 	5

2

HAL-003-2015027]

[Contd...

4	(a)	Answer the following in short :	4
		(1) Define resonse time of thermistors.	
		(2) Give two examples of acoustical transducers.	
		(3) Write the principle of capacitive pressure transducer.	
		(4) Write the equation which gives the relation between	
		temperature and resistance of a metallic wire.	
	(b)	Answer in brief : (any one)	2
		(1) A platinum wire with $R_0 = 75 \Omega$ and $\alpha = 0.004$, is kept	
		in an environment at 90°C. What is its resistance ?	
		(2) A wire strain gauge with a gauge factor $K=3$ is bonded	
		to a steel member which is subjected to a strain of	
		10^{-7} . If the original no-strain resistance of the gauge is	
		85Ω . Calculate the change in gauge resistance.	
	(c)	Answer in detail : (anuy one)	3
		(1) Explain strain gauge.	
		(2) Explain the working of tachometer.	
	(d)	Write notes on : (any one)	5
		(1) Explain construction and working of LVDT.	
		(2) Write a note on moving coil microphone.	
5	(a)	Answer the following in short :	4
		(1) Write the function of electron gun in CRT.	
		\mathbf{c}	
		(2) Give the advanrtages of a digital voltmeter.	
		(2) Give the advanrtages of a digital voltmeter.(3) Define flip-flop.	
		 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for 	
		 Give the advantages of a digital voltmeter. Define flip-flop. Write the logic equations of SUM and CARRY for half-adder. 	
	(b)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) 	2
	(b)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency 	2
	(b)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 k Ω and C=950 pF, calculate the frequency of oscillation of astable 555 timer. 	2
	(b)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency of oscillation of astable 555 timer. (2) Calculate the output pulse width for the 555 timer of 	2
	(b)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency of oscillation of astable 555 timer. (2) Calculate the output pulse width for the 555 timer of monostable multivibrator given that R_A = 8 kΩ and 	2
	(b)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency of oscillation of astable 555 timer. (2) Calculate the output pulse width for the 555 timer of monostable multivibrator given that R_A = 8 kΩ and C=22 μF. 	2
	(b) (c)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency of oscillation of astable 555 timer. (2) Calculate the output pulse width for the 555 timer of monostable multivibrator given that R_A = 8 kΩ and C=22 μF. Answer in detail : (any one) 	2
	(b) (c)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency of oscillation of astable 555 timer. (2) Calculate the output pulse width for the 555 timer of monostable multivibrator given that R_A = 8 kΩ and C=22 μF. Answer in detail : (any one) (1) Describe various functions of instruments. 	2
	(b) (c)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency of oscillation of astable 555 timer. (2) Calculate the output pulse width for the 555 timer of monostable multivibrator given that R_A = 8 kΩ and C=22 μF. Answer in detail : (any one) (1) Describe various functions of instruments. (2) Write a note on encoder. 	2
	(b) (c) (d)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency of oscillation of astable 555 timer. (2) Calculate the output pulse width for the 555 timer of monostable multivibrator given that R_A = 8 kΩ and C=22 μF. Answer in detail : (any one) (1) Describe various functions of instruments. (2) Write a note on encoder. 	2 3 5
	(b) (c) (d)	 (2) Give the advantages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency of oscillation of astable 555 timer. (2) Calculate the output pulse width for the 555 timer of monostable multivibrator given that R_A = 8 kΩ and C=22 μF. Answer in detail : (any one) (1) Describe various functions of instruments. (2) Write a note on encoder. Write notes on : (any one) (1) Explain frequency determination using CRO. 	2 3 5
	(b) (c) (d)	 (2) Give the advanrtages of a digital voltmeter. (3) Define flip-flop. (4) Write the logic equations of SUM and CARRY for half-adder. Answer in brief : (any one) (1) If R_A=R_B=50 kΩ and C=950 pF, calculate the frequency of oscillation of astable 555 timer. (2) Calculate the output pulse width for the 555 timer of monostable multivibrator given that R_A = 8 kΩ and C=22 μF. Answer in detail : (any one) (1) Describe various functions of instruments. (2) Write a note on encoder. Write notes on : (any one) (1) Explain frequency determination using CRO. (2) Write a note on D flip flop. 	2 3 5

[60/6]